

Tetrahedron Letters 46 (2005) 4131-4135

Tetrahedron Letters

# Stereoselective synthesis of C1–C5 and C4–C5 linked deoxy disaccharides via a ring closing metathesis protocol\*

G. V. M. Sharma, Asra Begum, K. Raman Kumar, Palakodety Radha Krishna, A. Prabhakar and A. C. Kunwar

<sup>a</sup>Indian Institute of Chemical Technology, D-211, Discovery Laboratory Organic Chemistry Division III, Hyderabad 500 007, India <sup>b</sup>NMR Group Indian Institute of Chemical Technology, Hyderabad 500 007, India

> Received 11 August 2004; revised 3 March 2005; accepted 11 March 2005 Available online 20 April 2005

**Abstract**—The stereoselective synthesis of C–C linked deoxy disaccharides by a short and efficient route is described. An RCM strategy was adopted for the assembly of the required ring skeleton on the sugar unit, while OsO<sub>4</sub> was used to introduce the *vic*-diol unit. © 2005 Elsevier Ltd. All rights reserved.

## 1. Introduction

The discovery of naturally occurring C-nucleosides with important pharmacological properties<sup>1</sup> gave impetus to synthetic efforts for preparing active carbohydrate analogs. The glycoconjugates found on cell surface membranes play an important role in cell-cell recognition and interaction and as such, increasing efforts have been directed towards the design and synthesis of glyco-substances for the study of glycobiology and as candidates for therapeutic and pharmaceutical development.<sup>2</sup> However, like proteins and nucleic acids, carbohydrates are susceptible to biodegradation, thus limiting their therapeutic potential and use in biological studies. C-Glycosides<sup>3</sup> have therefore attracted considerable interest, particularly in view of their hydrolytic stability and potential enzyme inhibitory properties. Additionally, such furo-pyran systems are constituents of the structures of several bio-active natural products. In continuation of our interest in this area, herein, we report the synthesis of anomeric and C-5 linked deoxy disaccharides 1-5 via an RCM strategy.

Thus, RCM on chirons **6a/b** was efficiently accomplished to produce the disaccharides **1**, **2** and **3**. Accordingly, the known aldehydes, **6a<sup>4</sup>** and **6b<sup>5</sup>** (Scheme 1),

Keywords: Deoxy disaccharides; Ring closing metathesis; cis-Dihydroxylation; vic-Diol.

prepared from D-mannose and L-sorbose, respectively, were treated with allyl bromide and activated zinc<sup>6</sup> in THF-aq NH<sub>4</sub>Cl at 0 °C to give the alcohols **7a** (62%) and **7b** (71%), respectively. The formation of carbinols **7a** (9:1) and **7b** (exclusive) with *anti*-selectivity can be explained through a Felkin–Ahn nonchelation model.<sup>7</sup>

The homoallylic alcohols **7a** and **7b** were treated with acryloyl chloride and Et<sub>3</sub>N in CH<sub>2</sub>Cl<sub>2</sub> to afford esters **8a** (58%) and **8b** (64%), respectively. The bis-olefins **8a** and **8b** on reaction with Grubbs' 1st generation catalyst [bis(tricyclohexylphosphine)benzylidene–ruthenium(IV) dichloride] and Ti(O<sup>f</sup>Pr)<sub>4</sub><sup>8</sup> in CH<sub>2</sub>Cl<sub>2</sub> afforded the respective enones **9a** (67%) and **9b** (60%). Reaction of the enones **9a** and **9b** with OsO<sub>4</sub> and NMO in acetone–water afforded the C(1)–C(5)-linked 4-deoxy disaccharides **1**, **2** and **3**, respectively. Olefin **9a** on *cis*-dihydroxylation gave **1** (72%) exclusively, while **9b** afforded a separable mixture of **2** and **3** in a 1:3 ratio. The new disaccharides **1**–**3** were unambiguously characterized by spectral analysis.

Earlier, we reported an efficient protocol for the stereoselective synthesis of C–C linked disaccharides<sup>9</sup> from furanyl sugar moieties.<sup>10</sup> In continuation of our RCM mediated studies, this protocol was extended to the synthesis of C(4)–C(5) linked deoxy disaccharides. Accordingly, the known<sup>11</sup> aldehyde **6c** (Scheme 2), prepared from D-glucose, on reaction with allyl bromide and activated zinc, under Barbier reaction conditions, gave alcohol **7c** (65%) as a separable diastereomeric mixture (4:1). The *anti*-stereoselective formation of **7c** can be

<sup>&</sup>lt;sup>★</sup>IICT Communication No. 0407016.

<sup>\*</sup>Corresponding author. Fax: +91 40 27160387; e-mail: esmvee@iict.res.in

Scheme 1. Reagents and conditions: (a) allyl bromide, activated zinc, aq NH<sub>4</sub>Cl, THF, 0 °C, 6 h; (b) acryloyl chloride, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>, rt, 6 h; (c) [bis(tricyclohexylphoshine)benzylidene–ruthenium(IV) dichloride], Ti(O<sup>i</sup>Pr)<sub>4</sub>, CH<sub>2</sub>Cl<sub>2</sub>, 40 °C, 18 h; (d) OsO<sub>4</sub>, NMO, acetone–water, rt, 12 h.

Scheme 2. Reagents and conditions: (a) allyl bromide, activated zinc, aq NH<sub>4</sub>Cl, THF, 0 °C, 6 h; (b) acryloyl chloride, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>, rt, 6 h; (c) [bis(tricyclohexylphosphine)benzylidene–ruthenium(IV) dichloride], Ti(O<sup>†</sup>Pr)<sub>4</sub>, CH<sub>2</sub>Cl<sub>2</sub>, 40 °C, 18 h; (d) OsO<sub>4</sub>, NMO, acetone–water, rt, 12 h; (e) 2,2-dimethoxypropane, PTSA, DMSO, rt, 6 h.

attributed to a nonchelation controlled approach.<sup>7</sup> Treatment of carbinol **7c** with acryloyl chloride and Et<sub>3</sub>N afforded ester **8c** (68%). The bis-olefin **8c** was subjected to reaction with Grubbs' 1st generation catalyst and Ti(O<sup>i</sup>Pr)<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> to afford **9c** (71%), which on *cis*-dihydroxylation (OsO<sub>4</sub>) gave diol **10** as an inseparable mixture. Reaction of **10** with 2,2-dimethoxypropane and PTSA afforded C(4)–C(5)-linked-4-deoxy-D-disaccharides **4** (22%) and **5** (48%), which were separable by column chromatography.

Extensive NMR studies were carried out for the structural characterization of disaccharides 1–5 making use of the vicinal couplings ( $^3J$ ) as well as data from 2D NOESY experiments. For disaccharide 1, the six-membered ring adopts a chair conformation. A strong NOE cross-peak (Fig. 1) between H8 and H10 in 1 as well as a large vicinal coupling  $J_{7,8} = 12.3$  Hz and small couplings  $J_{8',9} = 3.9$  Hz and  $J_{9,10} = 3.2$  Hz confirm the *trans*-diaxial relationship between H7 and H8 and the equatorial orientation of the furanoside ring. The pres-

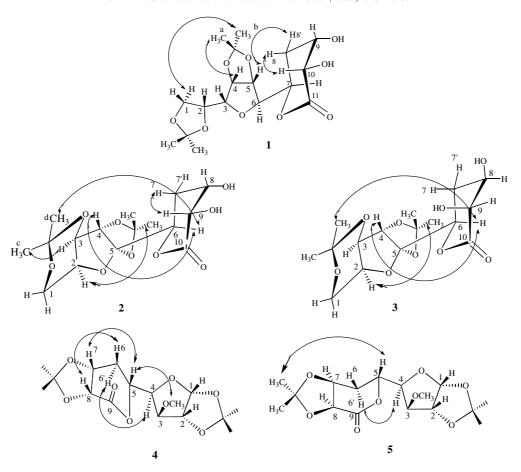



Figure 1. NOE measurements of saccharides 1-5 (selected NOEs are indicated).

ence of an inter-ring NOE between H5 and H8' further supports the assigned structure. The energy minimization studies (Fig. 2) gave additional proof for the structure of 1.

For disaccharide **2** (Fig. 1), the strong NOE cross-peak between H7–H9, and the large coupling value of  $J_{6,7} = 11.0 \text{ Hz}$  and small values of  $J_{7,8} = 1.6$  and

 $J_{6,7'}$  = 4.5 Hz support the stereochemistry of the new sugar ring and chair conformation. Similarly, for disaccharide 3, the absence of an NOE between H7 and H9 and the coupling constants  $J_{7',8}$  = 1.7 and  $J_{8,9}$  = 3.0 Hz confirm the new sugar ring stereochemistry. Furthermore, the presence of inter-ring NOEs between H4–H6 and H6–CH<sub>3</sub>(d) confirm that the stereochemistry at C-6 is the same in both 2 and 3. This data amply supports

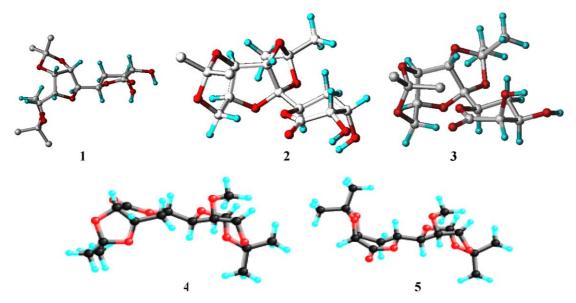



Figure 2. Energy minimized structures of compounds 1–5.

the proposed stereochemistry at C-6 in homoallylic alcohol **7b**. Energy minimization studies (Fig. 2) further proved the proposed structures for disaccharides **2** and **3**.

The new sugar ring in 4 adopts a half chair conformation, the stereochemistry of which is supported by NOE crosspeaks between H4-H6', H5-OMe, H5-H7 and H6-H8 as well as coupling constants  $J_{7,8} = 1.9$ ,  $J_{6,7} = 2.4$  and  $J_{6',7}$  = 11.9 Hz. Similarly, for 5, an NOE cross-peak between H5 and CH<sub>3</sub>(a), H4 and H6', along with the couplings  $J_{7,8} = 6.7$ ,  $J_{6,7} = 2.2$  and  $J_{6',7} = 3.3$  Hz, are consistent with the proposed structure. The value of  $J_{4,5} = 8.6 \text{ Hz}$  and the NOE between H4 and H6' for 4 and 5 suggests a dihedral angle of around 180° for H4-H5. This was further confirmed by the minimum energy structures obtained by molecular mechanics calculations performed using the sibyl programme. 12 The presence of NOE cross peaks between CH<sub>3</sub>(c)-H1 and CH<sub>3</sub>(c)-H2 indicates that the five-membered ring is in an envelope conformation in both 4 and 5. Molecular mechanics studies on 1–5 agree with the experimental data.

Thus in conclusion, a simple and efficient protocol for the synthesis of C(1)–C(5) and C(4)–C(5)-linked 4-deoxy disaccharides has been successfully achieved via a RCM approach, wherein 4-deoxy L-gulo- and L-manno-sugar moieties were incorporated at the off template site in **6a** and **6b** to give **1**, **2** and **3**, while L-manno- and L-gulo-moieties, respectively, were installed in **4** and **5** starting from **6c**. This flexible method should be adaptable to the synthesis of several non-natural saccharides linked to furanoses/pyranoses.

# 2. Spectral data for selected disaccharides

# 2.1. Compound 1

 $[\alpha]_D^{25}$  -29.28 (c 0.1, CHCl<sub>3</sub>); IR (neat): 1150, 1200, 1225, 1315, 1460, 1615, 3159 cm<sup>-1</sup>; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  4.91 (dd, 1H,  $J_{4,5}$  = 6.2,  $J_{5,6}$  = 1.0 Hz, H-5), 4.81 (dd, 1H,  $J_{4,5} = 6.2$ ,  $J_{3,4} = 3.7$  Hz, H-4), 4.75 (ddd, 1H,  $J_{7,8} = 12.3$ ,  $J_{6,7} = 6.8$ ,  $J_{7,8'} = 3.9$  Hz, H-7), 4.39 (ddd, 1H,  $J_{9,10} = 3.2$ ,  $J_{8',9} = 3.9$ ,  $J_{8,9} = 1.6$  Hz, H-9) 4.37 (ddd, 1H,  $J_{2.3} = 7.2$ ,  $J_{1'.2} = 5.0$ ,  $J_{1.2} = 6.3$  Hz, H-2), 4.12 (d, 1H,  $J_{9.10} = 3.2 \text{ Hz}$ , H-10), 4.08 (dd, 1H,  $J_{1,1'} = 8.7$ ,  $J_{1,2} = 5.0$  Hz, H-1), 4.02 (dd, 1H,  $J_{1,1'} = 8.7$ ,  $J_{1',2} = 6.3 \text{ Hz}, \text{ H-1'}, 4.01$ (dd, 1H,  $J_{5,6} = 1.0$ ,  $J_{6',7} = 6.8 \text{ Hz}, \text{ H-6},$ 3.95 (dd, 1H,  $J_{2,3} = 7.2$ ,  $J_{3,4} = 3.7 \text{ Hz}$ , H-3), 2.36 (dt,  $J_{8,8'} = 14.9$ ,  $J_{8',9} = 3.9 \text{ Hz}$ , H-8'), 1.89 (ddd, 1H,  $J_{8,9} = 1.6$ ,  $J_{7,8} = 12.3$  Hz,  $J_{8,8'} = 14.9$  Hz, H-8), 1.50 (s, 3H, H-b), 1.44 (s, 3H, H-d), 1.37 (s, 3H, H-c), 1.35 (s, 3H, H-a). <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  173.1, 113.0, 109.1, 85.8 (2×C), 82.3, 81.9, 80.8, 76.5, 70.4, 66.6, 65.6, 30.9, 26.7, 26.1, 25.0, 24.5. FABMS (*m/z*, %): 376 (M<sup>+</sup>+2, 30), 333 (35), 297 (57), 243 (100), 91 (100).

# 2.2. Compound 2

[ $\alpha$ ]<sub>D</sub><sup>25</sup> -6.36 (c 0.55, CHCl<sub>3</sub>); IR (neat): 1145, 1280, 1325, 1385, 1460, 1615, 3050 cm<sup>-1</sup>; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  4.91 (dd, 1H,  $J_{6,7'}$  = 4.5,  $J_{6,7}$  = 11.0 Hz, H-

6), 4.65 (s, 1H, H-4), 4.39 (ddd, 1H,  $J_{7,8} = 1.7$ ,  $J_{8,9} = 3.0$ ,  $J_{7',8} = 4.5$  Hz, H-8), 4.33 (d, 1H,  $J_{2,3} = 2.4$  Hz, H-3), 4.12 (dd, 1H,  $J_{1,2} = 2.2$ ,  $J_{2,3} = 2.4$  Hz, H-2), 4.17 (d, 1H,  $J_{8,9} = 3.0$  Hz, H-9), 4.05 (ABq, 1H,  $J_{1,2} = 2.2$ ,  $J_{1,1'} = 13.5$  Hz, H-1), 3.99 (ABq, 1H,  $J_{1',2} = 0$ ,  $J_{1,1'} = 13.5$  Hz, H-1'), 3.74 (br s, 1H, OH), 3.18 (br s, 1H, OH), 2.59 (dt, 1H,  $J_{6,7'} = 4.5$ ,  $J_{7,7'} = 14.8$  Hz, H-7'), 2.21 (ddd, 1H,  $J_{7,8} = 1.7$ ,  $J_{6,7} = 11.0$ ,  $J_{7,7'} = 14.8$  Hz, H-7), 1.49 (s, 3H, H-a), 1.41 (s, 3H, H-c), 1.35 (s, 3H, H-d), 1.34 (s, 3H, H-b). FABMS (m/z, %): 361 ( $M^+$ +1, 20), 281 (8), 184 (68), 93 (100), 73 (56), 57 (34). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  173.14, 113.61, 112.87, 97.39, 84.25, 77.38, 76.96, 76.54, 72.93, 72.82, 66.08, 60.15, 28.79, 27.59, 26.45, 18.56.

#### 2.3. Compound 3

[ $\alpha$ ]<sub>25</sub><sup>25</sup> -10 (c 0.5, CHCl<sub>3</sub>); IR (neat): 1154, 1275, 1350, 1385, 1450, 1615, 3159 cm<sup>-1</sup>; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  4.91 (dd, 1H,  $J_{6,7'}$  = 4.6,  $J_{6,7}$  = 11.6 Hz, H-6), 4.67 (s, 1H, H-4), 4.07 (ddd, 1H,  $J_{7,8}$  = 1.6,  $J_{8,9}$  = 2.2,  $J_{7',8}$  = 4.6 Hz, H-8), 4.33 (d, 1H,  $J_{2,3}$  = 2.1 Hz, H-3), 4.12 (dd, 1H,  $J_{1,2}$  = 2.1,  $J_{2,3}$  = 2.3 Hz, H-2), 4.07 (d, 1H,  $J_{8,9}$  = 2.2 Hz, H-9), 4.05 (ABq, 1H,  $J_{1,2}$  = 2.1,  $J_{1,1'}$  = 13.5 Hz, H-1), 3.99 (ABq, 1H,  $J_{1',2}$  = 0,  $J_{1,1'}$  = 13.5 Hz, H-1'), 3.48 (br s, 1H, OH), 3.02 (br s, 1H, OH), 2.53 (dt, 1H,  $J_{6,7'}$  = 4.6,  $J_{7,7'}$  = 14.8 Hz, H-7'), 2.35 (ddd, 1H,  $J_{7,8}$  = 1.6,  $J_{6,7}$  = 11.6,  $J_{7,7'}$  = 14.8 Hz, H-7), 1.50 (s, 3H, H-a), 1.41 (s, 3H, H-c), 1.35 (s, 3H, H-b), 1.34 (s, 3H). FABMS (m/z, %): 361 (M<sup>+</sup>+1, 4), 341 (8), 324 (12), 281 (26), 207 (40), 147 (100), 133 (74), 119 (57).

#### 2.4. Compound 4

[ $\alpha$ ] $_{\rm D}^{25}$  +9.62 (c 1.2, CHCl $_{\rm 3}$ ); IR (neat): 1180, 1425, 1585, 1756, 2885, 2925 cm $^{-1}$ ;  $^{\rm 1}$ H NMR (500 MHz, CDCl $_{\rm 3}$ ):  $\delta$  5.88 (d, 1H,  $J_{1,2}$  = 3.8 Hz, H-1), 4.93 (ddd, 1H,  $J_{5,6}$  = 2.2,  $J_{4,5}$  = 8.6,  $J_{5,6'}$  = 11.2 Hz, H-5), 4.69 (ddd, 1H,  $J_{7,8}$  = 6.7,  $J_{6,7}$  = 2.2,  $J_{6',7}$  = 3.3 Hz, H-7), 4.59 (d, 1H,  $J_{7,8}$  = 6.7 Hz, H-8), 4.58 (d, 1H,  $J_{1,2}$  = 3.8 Hz, H-2), 4.12 (d, 1H,  $J_{4,5}$  = 8.6 Hz, H-4), 3.90 (d, 1H,  $J_{3,4}$  = 2.9 Hz, H-3), 3.46 (s, 3H, OMe), 2.39 (dt, 1H,  $J_{5,6}$  = 2.2,  $J_{6,6'}$  = 15.3 Hz, H-6), 1.87 (ddd, 1H,  $J_{6',7}$  = 3.3,  $J_{5,6'}$  = 11.2,  $J_{6,6'}$  = 15.3 Hz, H-6'), 1.42 (s, 3H, H-b), 1.38 (s, 3H, H-d), 1.32 (s, 3H, H-c), 1.27 (s, 3H, H-a).  $^{13}$ C NMR (100 MHz, CDCl $_{\rm 3}$ ):  $\delta$  19.64, 26.75, 27.96, 29.83, 58.46, 65.73, 69.33, 82.05, 82.51, 82.99, 99.16, 105.10, 111.35, 111.82, 126.03, 170.08; FABMS (m/z, %): 345 (M $^{+}$ +1, 8), 287 (12), 221 (14), 147 (24), 85 (38), 73 (100).

## 2.5. Compound 5

[ $\alpha$ ]<sub>25</sub><sup>25</sup> -13.55 (c 0.7, CHCl<sub>3</sub>); IR (neat): 1180, 1425, 1585, 1756, 2885, 2925 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  5.81 (d, 1H,  $J_{1,2} = 3.8$  Hz, H-1), 4.53 (d, 1H,  $J_{1,2} = 3.8$  Hz, H-2), 4.43 (d, 1H,  $J_{7,8} = 1.9$  Hz, H-8), 4.25 (ddd, 1H,  $J_{7,8} = 1.9$ ,  $J_{6,7} = 2.4$ ,  $J_{6',7} = 11.9$  Hz, H-7), 4.19 (ddd, 1H,  $J_{5,6} = 2.4$ ,  $J_{4,5} = 8.6$ ,  $J_{5,6'} = 11.7$  Hz, H-5), 4.39 (dd, 1H,  $J_{4,5} = 8.6$ ,  $J_{3,4} = 3.3$  Hz, H-4), 3.76 (d, 1H,  $J_{3,4} = 3.3$  Hz, H-3), 3.42 (s, 3H, OMe), 1.86 (ddd, 1H,  $J_{6',7} = 11.9$ ,  $J_{5,6'} = 11.7$ ,  $J_{6,6'} = 12.8$  Hz, H-

6'), 1.65 (dt, 1H,  $J_{5,6} = 2.4$ ,  $J_{6,6'} = 12.8$  Hz, H-6), 1.48 (s, 3H, H-b), 1.46 (s, 3H, H-d), 1.40 (s, 3H, H-c), 1.31 (s, 3H, H-a). FABMS (m/z, %): 345 ( $M^+$ +1, 8), 287 (12), 221 (14), 147 (24), 85 (38), 73 (100).

# Acknowledgements

K.R.K. thanks the CSIR, New Delhi, India, for financial support.

## References and notes

- (a) Varki, A. Glycobiology 1993, 3, 97–130; (b) Dwek, R. A. Chem. Rev. 1996, 96, 683–720.
- (a) Yarema, K. J.; Bertozzi, C. R. Curr. Opin. Chem. Biol. 1998, 2, 49–61; (b) Witczak, Z. J.; Nicforth, K. A. Carbohydrates in Drug Design; Marcel Dekker: New York, 1997.
- 3. Yaguo, D.; Robert, J. L. Tetrahedron 1998, 54, 9913-9959.
- 4. Sharma, G. V. M.; Reddy, V. G.; Chander, A. S.; Reddy, K. R. *Tetrahedron: Asymmetry* **2002**, *13*, 21–24.

- 5. Izquierdo, I.; Plaza, M. T.; Robles, R.; Mota, A. J.; Franco, F. Tetrahedron: Asymmetry 2001, 12, 2749–2754.
- (a) Petrier, C.; Luche, J.-L. J. Org. Chem. 1985, 50, 910–912;
  (b) Luche, J.-L.; Einhorn, C. J. Organomet. Chem. 1987, 322, 177–183.
- (a) Chattopadhyay, A. J. Org. Chem. 1996, 61, 6104–6107;
  (b) Mukaiyama, T.; Suzuki, K.; Yamada, T.; Tabusa, F. Tetrahedron 1990, 46, 265–276.
- 8. Ghosh, A. K.; Cappiello, J.; Shin, D. *Tetrahedron Lett.* **1998**, *39*, 4651–4654.
- (a) Dondoni, A.; Kniezo, L.; Martinkova, M. J. Chem. Soc., Chem. Commun. 1994, 1963–1964; (b) Armstrong, R. W.; Teegarden, B. R. J. Org. Chem. 1992, 57, 915–922.
- Sharma, G. V. M.; Hymavathi, L.; Radha Krishna, P. Tetrahedron Lett. 1997, 38, 6929–6932.
- Tronchet, J. M.; Baehler, B.; Eder, H.; Le Hong, N.; Perret, F.; Poncet, J.; Zumbwald, J. B. *Helv. Chem. Acta* 1973, 56, 1310–1313.
- 12. The energy minimization was carried out using sibyl 6.8 with default Tripose force field parameters. Minimization was done first with steepest descent followed by conjugate gradient methods for a maximum of 2000 iterations each or RMS deviation of 0.005 kcal/mol, which ever was earlier